

PageRank & HITS

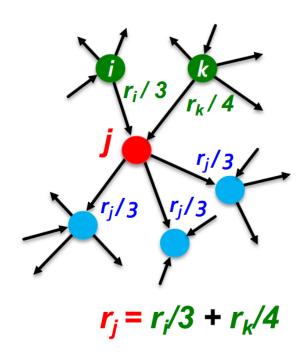
CE642: Social and Economic Networks
Maryam Ramezani
Sharif University of Technology
maryam.ramezani@sharif.edu

01

PageRank

PageRank

- A "vote" from an important page is worth more:
 - Each link's vote is proportional to the importance of its source page
 - If page i with importance r_i has d_i out-links, each link gets r_i / d_i votes
 - Page j's own importance r_j is the sum of the votes on its inlinks



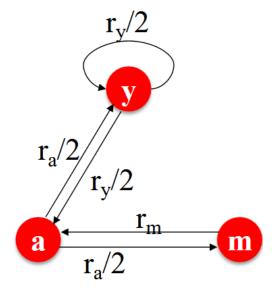
PageRank: Flow View

- A page is important if it is pointed to by other important pages
- **Define** "rank" r_j for node j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

You might wonder: Let's just use Gaussian elimination to solve this system of linear equations. Bad idea!



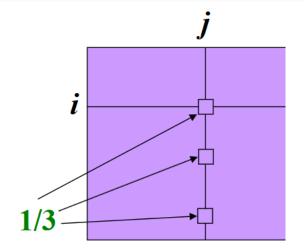
"Flow" equations:

$$r_y = r_y / 2 + r_a / 2$$

 $r_a = r_y / 2 + r_m$
 $r_m = r_a / 2$

PageRank: Matrix View

- Stochastic adjacency matrix M
 - Let page $m{j}$ have $m{d}_{m{j}}$ out-links
 - If $j \rightarrow i$, then $M_{ij} = \frac{1}{d_i}$
 - M is a column stochastic matrix
 - Columns sum to 1

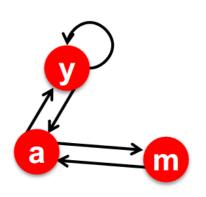


- Rank vector r: An entry per page
 - $lackbox{\textbf{r}}_{i}$ is the importance score of page $oldsymbol{i}$
- The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

PageRank Example



$$\begin{array}{c|ccccc} & r_y & r_a & r_m \\ r_y & \frac{1}{2} & \frac{1}{2} & 0 \\ r_a & \frac{1}{2} & 0 & 1 \\ r_m & 0 & \frac{1}{2} & 0 \end{array}$$

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

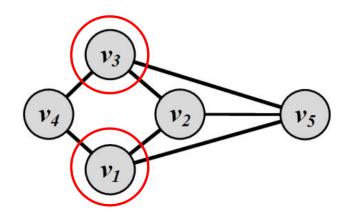
$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix}$$

PageRank: Matrix View

Similar to Katz Centrality, in practice, $\alpha < 1/\lambda$, where λ is the largest eigenvalue of A^TD^{-1} . In undirected graphs, the largest eigenvalue of A^TD^{-1} is $\lambda = 1$; therefore, $\alpha < 1$.

PageRank Example

• We assume α =0.95 < 1 and and β = 0.1



$$A = \left[\begin{array}{ccccc} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{array} \right]$$

$$\mathbf{C}_{p} = \beta (\mathbf{I} - \alpha A^{T} D^{-1})^{-1} \cdot \mathbf{1} = \begin{bmatrix} 2.14 \\ 2.13 \\ 2.14 \\ 1.45 \\ 2.13 \end{bmatrix}$$

Maryam Ramezani Social and Economic Networks 8

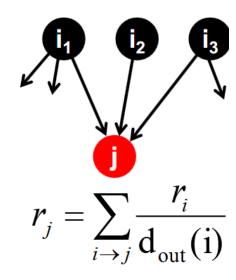
Connection to Random Walk

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t+1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

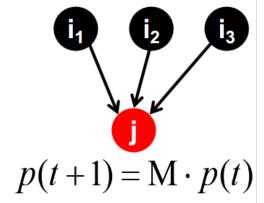
Let:

- **p**(t) ... vector whose ith coordinate is the prob. that the surfer is at page i at time t
- So, p(t) is a probability distribution over pages



Stationary Distribution

- Where is the surfer at time t+1?
 - Follow a link uniformly at random $p(t+1) = M \cdot p(t)$



Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

How to solve PageRank?

The flow equation:

$$1 \cdot r = M \cdot r$$

$$\begin{vmatrix} \mathbf{r}_{y} \\ \mathbf{r}_{a} \\ \mathbf{r}_{m} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{vmatrix} \begin{vmatrix} \mathbf{r}_{y} \\ \mathbf{r}_{a} \\ \mathbf{r}_{m} \end{vmatrix}$$

- So the rank vector r is an eigenvector of the stochastic ajd. matrix M (with eigenvalue 1)
 - Starting from any vector u, the limit M(M(...M(M u))) is the **long-term distribution** of the surfers.
 - PageRank = Limiting distribution = principal eigenvector of M
 - Note: If r is the limit of the product $MM \dots Mu$, then r satisfies the flow equation $1 \cdot r = Mr$
 - So r is the principal eigenvector of M with eigenvalue 1
- We can now efficiently solve for r!
 - The method is called Power iteration

Power Iteration for PageRank

- Given a web graph with N nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Initialize: $r^0 = [1/N,, 1/N]^T$
 - Iterate: $r^{(t+1)} = M \cdot r^t$
 - Stop when $|m{r^{(t+1)}} m{r^t}|_1 < \epsilon$

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

$$d_i \dots \text{ out-degree of node } i$$

 $|x|_1 = \sum_1^N |x_1|$ is the **L**₁ norm Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution.

PageRank Example

Power Iteration:

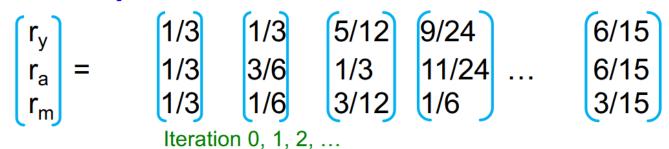
• Set
$$r_j \leftarrow 1/N$$

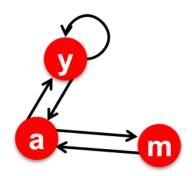
• 1:
$$r'_j \leftarrow \sum_{i \to j} \frac{r_i}{d_i}$$

■ 2: If
$$|r - r'| > ε$$
:
■ $r \leftarrow r'$

• 3: go to 1

Example:





	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$
 $r_a = r_y/2 + rm$
 $r_m = r_a/2$

PageRank Problems

Two problems:

- (1) Some pages are dead ends (have no out-links)
 - Such pages cause importance to "leak out"

- (2) Spider traps
 (all out-links are within the group)
 - Eventually spider traps absorb all importance



"Dead End" Problem

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

"Dead End" Problem

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

Maryam Ramezani Social and Economic Networks 16

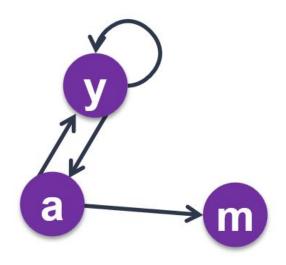
"Dead End" Problem

Power Iteration:

Set
$$r_i = 1$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

And iterate



$$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$$

$$\mathbf{r}_{a} = \mathbf{r}_{y}/2$$

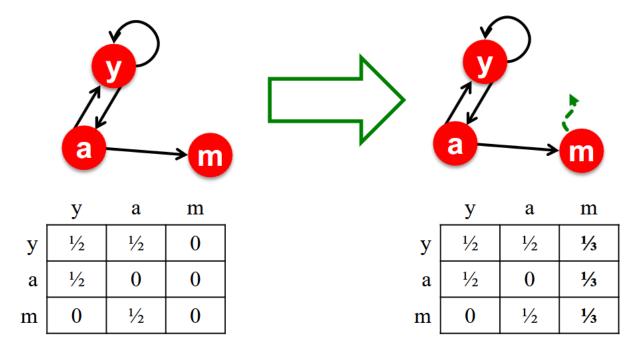
$$\mathbf{r}_{m} = \mathbf{r}_{a}/2$$

Iteration 0, 1, 2, ...

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution to "Dead End" Problem

- Teleports: Follow random teleport links with total probability 1.0 from dead-ends
 - Adjust matrix accordingly



Maryam Ramezani Social and Economic Networks 18

"Spider Trap" Problem

The "Spider trap" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

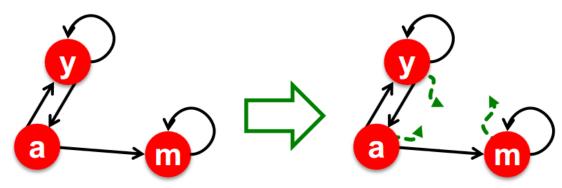
 Iteration: 0,
 1,
 2,
 3...

 $\frac{1}{2}$ $\frac{1}{2}$ 0
 0
 0

 $\frac{1}{2}$ 0
 1
 1
 1

Solution to "Spider Trap" Problem

- Solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to a random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps



Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps
 PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

The Google Matrix

- Google's solution that does it all:
 - At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \, \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

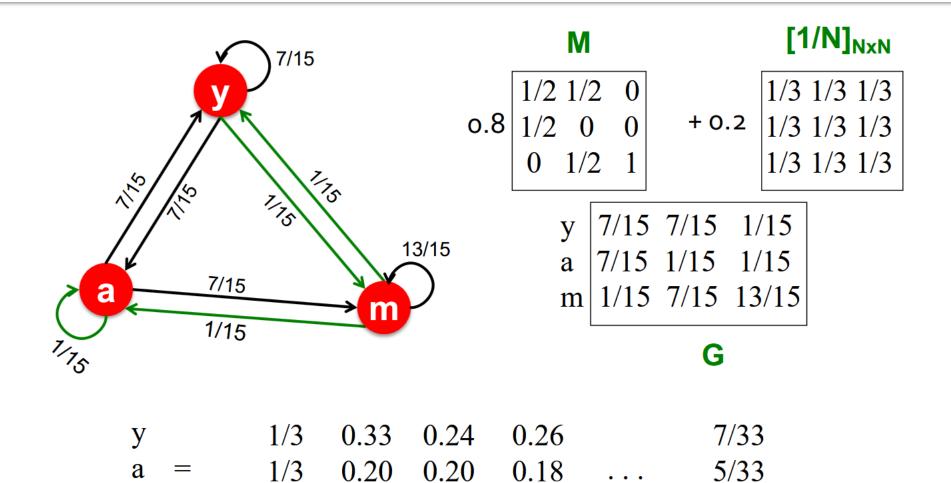
The Google Matrix G:

 $[1/N]_{N\times N}...N$ by N matrix where all entries are 1/N

$$G = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: $r = G \cdot r$ And the Power method still works!
- What is β ?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta = 0.8$)



1/3

 \mathbf{m}

0.46

0.52

Maryam Ramezani Social and Economic Networks 24

21/33

0.56

Conclusion

- PageRank solves for r = Gr and can be efficiently computed by power iteration of the stochastic adjacency matrix (G)
- Adding random uniform teleportation solves issues of dead-ends and spider-traps

Maryam Ramezani Social and Economic Networks 25

PageRank Problems

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Solution: Topic-Specific PageRank (next)
- Uses a single measure of importance
 - Other models e.g., hubs-and-authorities
 - Solution: Hubs-and-Authorities (next)
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank (next)

02

Topic-Specific PageRank

Topic-Specific PageRank

- Instead of generic popularity, can we measure popularity within a topic?
- Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history."
- Allows search queries to be answered based on interests of the user
 - Example: Query "Trojan" wants different pages depending on whether you are interested in sports or history.

Topic-Specific PageRank

- Assume each walker has a small probability of "teleporting" at any step
- Teleport can go to:
 - Any page with equal probability
 - To avoid dead-end and spider-trap problems
 - A topic-specific set of "relevant" pages (teleport set)
 - For topic-sensitive PageRank.
- Idea: Bias the random walk
 - When walked teleports, she pick a page from a set S
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic
 - For each teleport set S, we get a different vector r_S

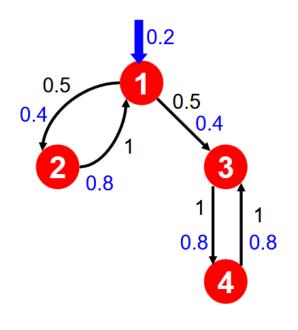
Topic-Specific PageRank

Let:

•
$$A_{ij} = \beta M_{ij} + (1-\beta)/|S|$$
 if $i \in S$
 βM_{ij} otherwise

- A is stochastic!
- We have weighted all pages in the teleport set S equally
 - Could also assign different weights to pages!
- Compute as for regular PageRank:
 - Multiply by M, then add a vector
 - Maintains sparseness

Topic-Specific PageRank Example



Suppose S = {1},
$$\beta$$
 = 0.8

Node	Iteration				
	0	1	2	stable	
1	1.0	0.2	0.52	0.294	
2	0	0.4	80.0	0.118	
3	0	0.4	80.0	0.327	
4	0	0	0.32	0.261	

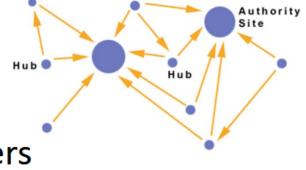
Note how we initialize the PageRank vector differently from the unbiased PageRank case.

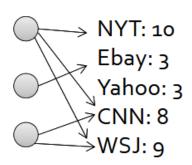
03

HITS (Hypertext-Induced Topic Selection)

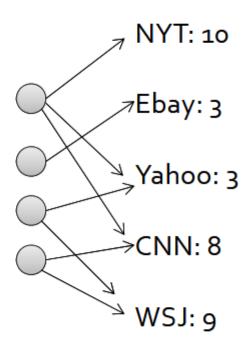
Interesting pages fall into two classes:

- Authorities are pages containing useful information
 - Newspaper home pages
 - Course home pages
 - Home pages of auto manufacturers
- 2. Hubs are pages that link to authorities
 - List of newspapers
 - Course bulletin
 - List of US auto manufacturers





- Hubs and Authorities
 - Each page has 2 scores:
 - Quality as an expert (hub):
 - Total sum of votes of pages pointed to
 - Quality as an content (authority):
 - Total sum of votes of experts
 - Principle of repeated improvement



- A good hub links to many good authorities
- A good authority is linked from many good hubs

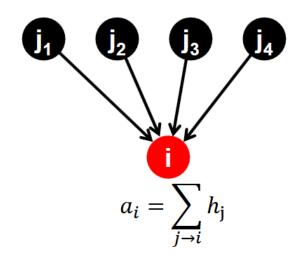
- Model using two scores for each node:
 - Hub score and Authority score
 - Represented as vectors h and a

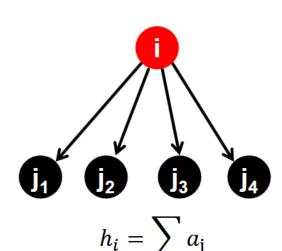
Each page i has 2 scores:

- Authority score: a_i
- Hub score: h_i

HITS algorithm:

- Initialize: $a_j = 1$, $h_i = 1$
- Then keep iterating:
 - $\forall i$: Authority: $a_i = \sum_{j \to i} h_j$
 - \blacksquare $\forall i$: Hub: $h_i = \sum_{i \to j} a_j$
 - $\forall i$: normalize: $\sum_j a_j = 1$, $\sum_j h_j = 1$





Transition Matrix A

- HITS converges to a single stable point
- Slightly change the notation:
 - Vector $a = (a_1..., a_n), h = (h_1..., h_n)$
 - Adjacency matrix $(n \times n)$: $A_{ij}=1$ if $i \rightarrow j$
- Then:

$$h_i = \sum_{i \to j} a_j \iff h_i = \sum_j A_{ij} a_j$$

- So: h = A a
- And likewise: $a = A^T h$

Hubs and Authorities Equations

- The hub score of page *i* is proportional to the sum of the authority scores of the pages it links to: $h = \lambda A a$
 - Constant λ is a scale factor, $\lambda = 1/\sum h_i$
- The authority score of page i is proportional to the sum of the hub scores of the pages it is linked from: $a = \mu A^T h$
 - Constant μ is scale factor, $\mu=1/\sum a_i$

Iterative Algorithm

- The HITS algorithm:
 - Initialize h, a to all 1's
 - Repeat:
 - h = A a
 - Scale h so that its sums to 1.0
 - $a = A^T h$
 - Scale a so that its sums to 1.0
 - Until h, a converge (i.e., change very little)

Hubs and Authorities Equations

HITS algorithm in new notation:

- Set: $a = h = 1^n$
- Repeat:

•
$$h = A a$$
, $a = A^T h$

- Normalize
- Then: $a = A^T(\underline{A}, \underline{a})$
- Thus, in 2k steps:

$$a=(A^TA)^k a$$

 $h=(AA^T)^k h$

 α is being updated (in 2 steps):

$$A^{T}(A \ a) = (A^{T}A) \ a$$

h is updated (in 2 steps):

$$A(A^Th)=(AA^T)h$$

Repeated matrix powering

Hubs and Authorities Equations

$$h = \lambda A a$$

$$a = \mu A^T h$$

•
$$h = \lambda \mu A A^T h$$

$$a = \lambda \mu A^T A a$$

$$\lambda = 1/\sum h_i$$

 $\mu = 1/\sum a_i$

- Under reasonable assumptions about A, the HITS iterative algorithm converges to vectors h* and a*:
 - h^* is the principal eigenvector of matrix $A A^T$
 - a^* is the principal eigenvector of matrix $A^T A$

Conclusion

- PageRank and HITS are two solutions to the same problem:
 - What is the value of an in-link from u to v?
 - In the PageRank model, the value of the link depends on the links into u
 - In the HITS model, it depends on the value of the other links out of u

04

TrustRank

Idea

- Basic principle: Approximate isolation
 - It is rare for a "good" page to point to a "bad" (spam) page
- Sample a set of "seed pages" from the web
- Have an oracle (human) identify the good pages and the spam pages in the seed set
 - Expensive task, so we must make seed set as small as possible

Idea

- Call the subset of seed pages that are identified as "good" the "trusted pages"
- Perform a topic-sensitive PageRank with teleport set = trusted pages.
 - Propagate trust through links:
 - Each page gets a trust value between 0 and 1
- Use a threshold value and mark all pages below the trust threshold as spam

Simple Model

- Set trust of each trusted page to 1
- Suppose trust of page p is t_p
 - Set of out-links o_p
- For each $q \in O_p$, p confers the trust:
 - $\beta t_p/|o_p|$ for $0 < \beta < 1$
- Trust is additive
 - Trust of p is the sum of the trust conferred on p by all its in-linked pages
- Note similarity to Topic-Specific PageRank
 - Within a scaling factor, TrustRank = PageRank with trusted pages as teleport set

