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A “vote” from an important
page is worth more:
Each link’s vote is proportional
to the importance of its source
Page
If page i with importance r; has

d; out-links, each link gets r;/ d;

votes

Page j's own importance r; is
the sum of the votes on its in-
links




PageRank: Flow View

A page is important if it is

pointed to by other important r,/2
pages
Define “rank” r; for node j
Ty
’r'. — ——
T Lad;
l—]
d; ... out-degree of node i “Flow” equations:

r, =r,/2+r,/2
r, =r, /2 +r,

You might wonder: Let’s just use Gaussian elimination =1, /2
to solve this system of linear equations. Bad idea!



PageRank: Matrix View

. : J
Stochastic adjacency matrix M
Let page j have d; out-links ; I
1
Ifj - i,then M., = — /
J ’ ij d]. //[]
M is a column stochastic matrix —
Columns sumto 1 1/3 41.7”{%I
Rank vector r: An entry per page M
r; is the importance score of page i

iri =1
The flow equations can be written

r =M-r r-=Z:E



PageRank Example

r, r, I,

ryl 2| %2 | 0

r,| 2| 0 | 1

r,| 0% |0
ry =ry/2+r,/2 ry| |2 2 0] 1
r, =r,/2+r, =2 0 1|
r = r; / r,| |0 %2 0],




PageRank: Matrix View

Cp(vi) = 0623 1 Ay 5&7) t+5

What if the

degree is 1

zZero?

ou C — OéATD_lc + ]_
"t >0 g p p+ 0
D = diag(d9™, d3™t, ..., do") l

C,=80-aA"D Y 1.1

Similar to Katz Centrality, in practice, ¢ < 1/4, where 1is

the largest eigenvalue of ATD™1. In undirected graphs, the
largest eigenvalue of ATD1 is A= 1; therefore, @ < 1.
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Connection to Random Walk

Imagine a random web surfer:

At any time t, surfer is on some page i

At time t + 1, the surfer follows an

out-link from i uniformly at random po— d

i o 5,0
Ends up on some page j linked from i J ~out

Process repeats indefinitely
Let:

p(t) ... vector whose it" coordinate is the
prob. that the surfer is at page [ at time ¢

So, p(t) is a probability distribution over pages



Stationary Distribution

Where is the surfer at time 7+1? ?
Follow a link uniformly at random
p(t+1)= M- p(t) p(t+1)=M- p(1)
Suppose the random walk reaches a state
p(t+1)= M- -p(t) = p(t)
then p(t) is stationary distribution of a random walk
Our original rank vector r satisfies r = M - r

So, r is a stationary distribution for
the random walk



How to solve PageRank?

]

y

a

1o % o0lr,
T M r

So the rank vector r is an eigenvector of the
stochastic ajd. matrix M (with eigenvalue 1)
Starting from any vector u, the limit M(M(... M(M u)))
is the long-term distribution of the surfers.
PageRank = Limiting distribution = principal eigenvector of M

Note: If r is the limit of the product MM ... Mu, then r satisfies
the flow equation 1 -r = Mr

The flow equation:
l:r=M-1r

=

I
<
-
[

m’-ﬁ

=

So 1 is the principal eigenvector of M with eigenvalue 1
We can now efficiently solve for r!

The method is called Power iteration



Power Iteration for PageRank

Given a web graph with N nodes, where the
nodes are pages and edges are hyperlinks
Power iteration: a simple iterative scheme

Initialize: r° = [1/N, ....,1/N]T "
terate: r&*D = M . 7t R+ Zﬁ_
J d;

1—]

Stop when |[r& V- ¢t < ¢

d; .... out-degree of node i

Ix|; = ¥ |x¢| is the L1 norm
Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution.



PageRank Example

Power Iteration: > 7
y| % | % | 0
Setr; « 1/N al B | 0 | 1
TR T m| 0 | % | 0
. _] [,—)] dl
, r, =1r,/2 +r,/2
2:|f|T—T|>€I ri:ri/Z{-rm
r 1’ Ym = Tq /2
3:gotol
Example:
ry 1/3 1/3| |5/12| (9/24 6/15
| = 1/3|  |3/6 1/3 | 11/24) ... 6/15
M 1/3 1/6/ (3/12) (1/6 3/15

lteration 0, 1, 2, ...



PageRank Problems

Two problems:
(1) Some pages are
dead ends (have no out-links)

Such pages cause
importance to “leak out”

(2) Spider traps
(all out-links are within the group)
Eventually spider traps absorb all importance SDl'der trap




“Dead End” Problem

00 -3

I—)] 1
Example:
E I 0 0 0
r, 0 1 0 0

lteration O, 1, 2, ...



“Dead End” Problem

00 -3

I—)] 1
Example:
E I 0 0 0
r, 0 1 0 0

lteration O, 1, 2, ...



“Dead End” Problem

y a m
Power Iteration:
Setr; =1 y| ‘2 % 0
I ;— al 2| 0
And iterate - m| O %
ry, =r,/2+r,/2
N 1/3 26  3/12 5/24 0 > sl
L | = 113 16 212 3024 .. © s aot o
[, /3 1/6  1/12 2/24 0

lteration 0, 1, 2, ...

Here the PageRank “leaks” out since the matrix is not stochastic.




Solution to “Dead End” Problem

Teleports: Follow random teleport links with
total probability 1.0 from dead-ends

Adjust matrix accordingly

N

y a m
y y| Y %) Vs
a al| » 0 Y5




“Spider Trap” Problem

The “Spider trap” problem:

t
0—0° -3
J d;

=]
Example:
Iteration: O, 1, 2, 3...
2 _ 1 | O | 0 | 0
My 0 I 1 1 1



Solution to “Spider Trap” Problem

Solution for spider traps: At each time step, the
random surfer has two options

With prob. g, follow a link at random

With prob. 1-4, jump to a random page

Common values for £ are in the range 0.8 to 0.9
Surfer will teleport out of spider trap within a
few time steps

&



Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem

and why do teleports solve the problem?
Spider-traps are not a problem, but with traps
PageRank scores are not what we want

Solution: Never get stuck in a spider trap by
teleporting out of it in a finite number of steps

Dead-ends are a problem

The matrix is not column stochastic so our initial
assumptions are not met

Solution: Make matrix column stochastic by always
teleporting when there is nowhere else to go



The Googdle Matrix

Google’s solution that does it all:
At each step, random surfer has two options:

With probability 8, follow a link at random
With probability -4, jump to some random page

PageRank equation [Brin-Page, 98]

Zﬁ ——l— (1 ﬁ)— of node i

l—>]

This formulation assumes that M has no dead ends. We can either
preprocess matrix M to remove all dead ends or explicitly follow random
teleport links with probability 1.0 from dead-ends.



The Googdle Matrix

PageRank equation [Brin-Page, ‘98]
B z T; e 1
=) b a 1-F)5

=]

The Google Matrix G: [1/NJs-.N by N matrix

1 where all entries are 1/N
G=ﬁM+(1—[>’)[—]
N NXN

We have a recursive problem: r =G - r
And the Power method still works!
What is £?
In practice £ =0.8,0.9 (make 5 steps on avg., jump)



Random Teleports (B = 0.8)

M [1/N]nxn
/212 0 1/31/31/3
1/2 0 0| +©°-2(1/31/31/3
0 12 1 1/31/31/3

y |7/15 7/15 1/15
a |7/15 1/15 1/15
m|1/15 7/15 13/15

G
y 1/3 033 024 0.26 7/33
a = 13 020 020 0.18 ... 5/33
m 1/3 046 0.52 0.56 21/33



Conclusion

PageRank solves forr = G1r and can be
efficiently computed by power iteration of the

stochastic adjacency matrix (G)
Adding random uniform teleportation solves

issues of dead-ends and spider-traps



PageRank Problems

Biased against topic-specific authorities
Topic-Specific PageRank (next)

Other models e.g.,
Hubs-and-Authorities (next)

Artificial link topographies created in order to
boost page rank

TrustRank (next)
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Topic-Specific PageRank

Evaluate Web pages not just according
to their popularity, but by how close they are
to a particular topic, e.g. “sports” or “history.”

Example: Query “Trojan” wants different pages
depending on whether you are interested in sports
or history.



Topic-Specific PageRank

Assume each walker has a small probability of
“teleporting” at any step

Any page with equal probability
To avoid dead-end and spider-trap problems

A topic-specific set of “relevant” pages (teleport set)
For topic-sensitive PageRank.

When walked teleports, she pick a page from a set S

S contains only pages that are relevant to the topic
E.g., Open Directory (DMOZ) pages for a given topic

For each teleport set S, we get a different vector r



Topic-Specific PageRank

Let:
A; =B M, +(1-B) /IS| ifieS
BM; otherwise
A is stochastic!
We have weighted all pages in the
teleport set S equally

Compute as for regular PageRank:
Multiply by M, then add a vector

Maintains sparseness



Topic-Specific PageRank Example

Suppose S=1{1}, 3 =0.8

1 2... stable
0 0.2 0.52 0.294
0.4 0.08 0.118
0.4 0.08 0.327
0 0.32 0.261

A WON -
OO -~0

Note how we initialize the PageRank vector differently from the
unbiased PageRank case.



HITS (Hypertext-Induced Topic
Selection)

%



Hubs and Authorities

Authorities are pages containing

useful information : "o 0
Newspaper home pages wo— &) e .
Course home pages "

Home pages of auto manufacturers ‘

Hubs are pages that link to authorities
List of newspapers NYT: 10

i Ebay: 3
Course bulletin Yahoo: 3
CNN: 8

List of US auto manufacturers
WSJ: g



Hubs and Authorities

Each page has 2 scores:
Quality as an expert (hub):
Total sum of votes of pages pointed to

Quality as an content ( ):

Total sum of votes of experts

Principle of repeated improvement

NYT: 10
Ebay: 3
Yahoo: 3
CNN:8

WSJ: g



Hubs and Authorities

Hub score and Authority score

Represented as vectors h and a



Hubs and Authorities

Each page i has 2 scores:
Authority score: q;

Hub score: h;

j—t

Initialize: aj = 1, hi =1
Then keep iterating:

Vi: Authority: a; = }.;,; h

Vi:Hub: h; = Y, q; 0 @ @

Vi:normalize: };a; =1,);hj =1 hi= g
L )



Transition Matrix A

Slightly change the notation:
Vectora = (a,...,a,), h=(h;...,h,)

Adjacency matrix (n x n): AI.J.:] if iy
Then:

h=Ya < h= Zm

I—)_]

SO: h — Aa
And likewise: a= A" h



Hubs and Authorities Equations

The score of page i is proportional to the
sum of the scores of the pages it
links to:

Constant A is a scale factor, A=1/2_h.

The score of page i is proportional
to the sum of the scores of the pages it is
linked from:

Constant [ is scale factor, p=1/2_a.



Iterative Algorithm

The HITS algorithm:

Initialize h, a to all 1’s
Repeat:
h=Aa
Scale h so that its sums to 1.0
a=A"h
Scale a so that its sums to 1.0

Until h, a converge (i.e., change very little)



Hubs and Authorities Equations

HITS algorithm in new notation:

Set:a=h=1"
Repeat:
h=Aa a=A"h
Normalize

Then: a—AT(A a)

newh,

HEW d

Thus, in 2k steps:
a=(ATA)*a
h=(A4 AT)* h

AT(4 a)—(AT4) a

A(ATh)=(4 AT) h

Repeated matrix powering



Hubs and Authorities Equations

h =AA a )\=1/Zhl-
a=uA’h h=1/20;
h=AuAAh
a=AuA"Aaq

Under reasonable assumptions about A, the
HITS iterative algorithm

h*is the of matrix A AT

a*is the of matrix AT A



Conclusion

PageRank and HITS are two solutions to the
same problem:

In the PageRank model, the value of the link
depends on the

In the HITS model, it depends on the value of the
other links
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Basic principle: Approximate isolation

It is rare for a “good” page to point to a “bad”
(spam) page

Sample a set of “ ” from the web

Have an ( ) identify the good
pages and the spam pages in the seed set

so we must make seed set as small
as possible



Call the subset of seed pages that are
identified as “ ”the “ i

Perform a topic-sensitive PageRank with
teleport set = trusted pages.

Each page gets a trust value between 0 and 1
Use a threshold value and mark all pages

below the trust threshold as spam



Simple Model

Set trust of each trusted page to 1
Suppose trust of page pis t,

Set of out-links o,
For each g €o,, p confers the trust:

pt,/lo,| forO<f<1

Trust of p is the sum of the trust conferred
on p by all its in-linked pages

Within a scaling factor, with
trusted pages as teleport set



Any Question?

47
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